
ISC Passive DNS Architecture

Robert Edmonds
Internet Systems Consortium, Inc.

March 2012

Contents

1 Introduction 2
1.1 Domain Name System . 2
1.2 Passive DNS Replication . 3
1.3 ISC Passive DNS . 5

2 Processing stages 7
2.1 Initial message collection . 7
2.2 Decomposition into RRsets . 9
2.3 Initial de-duplication . 10
2.4 Bailiwick reconstruction . 12

2.4.1 Algorithm . 13
2.5 Re-de-duplication . 14
2.6 Static filtering . 15

3 Message passing interface 15
3.1 Raw response messages . 16
3.2 “Front” de-duplication . 16
3.3 “Back” de-duplication . 17
3.4 Filtering . 17
3.5 Discards . 17

4 References 18

1

ISC Passive DNS Architecture

1 Introduction

This document describes the architecture of ISC Passive DNS, an implementation
of Florian Weimer’s “Passive DNS Replication” technique [1]. This document will
describe at a high level the internal implementation details of the various stages that
compose ISC Passive DNS as well as the message passing interfaces between those
stages.

ISC Passive DNS itself is one component in a larger suite of technologies em-
ployed by the ISC Resiliency and Security Forum (RSF). Other components include
the ISC Security Information Exchange (SIE), which is used to receive the collected
input of ISC Passive DNS sensors distributed throughout the Internet and to send
the coalesced output to downstream consumers, such as ISC DNSDB, which is a his-
torical database of DNS records. These three systems are part of a loosely coupled
architecture and since this document focuses on ISC Passive DNS, the details of the
SIE and DNSDB systems will not be covered.

1.1 Domain Name System

Understanding passive DNS replication requires a robust understanding of the Do-
main Name System, which is, roughly speakly, a distributed hierarchical key-value
store. Rather than paraphrase existing descriptions, here is Paul Vixie’s “simplified
view” [2] of the DNS:

The DNS namespace has a tree structure, where every node has a par-
ent except the root node, which is its own parent. Nodes have labels
that are from 1 to 63 characters long, except the root node whose label
is empty. A domain is a node in context, and a fully qualified domain
name has a presentation form that is just the node names, bottom up,
with each followed by a period (.). For example, www.google.com is
the fully qualified name of a node whose name is www, whose parent is
google, whose grandparent is com, and whose great-grandparent is the
DNS root.

Nodes are grouped together into zones, the apex of each being called a
start of authority and the bottom edges being called delegation points
if other zones exist below them, or leaf nodes if not. Zones are served
by authority servers that are either primary (if the zone data comes to
them from outside the DNS) or secondary (if their zone data comes to

Edmonds 2

ISC Passive DNS Architecture

them from primary servers via a zone transfer procedure). For exam-
ple, root, org, acm.org, and hq.acm.org1 are separate zones of admin-
istrative authority.

Every node can have RRs (resource records) that contain the actual
content of DNS. Depending on its name, type, and data, an RR can map
a host name to an IP address or vice versa, or describe the mail servers
for a domain, or serve a growing variety of other purposes. Every RR
has a name, class, type, TTL (time to live), and data. TTL is measured in
seconds and begins to decrement whenever an RR is transmitted from
an authority server. This TTL eventually ticks down to zero inside in-
termediate caching servers; thus, the authoritative server’s stated TTL
puts an upper bound on the reuse lifetime of an RR.

DNS clients are most often found inside the runtime libraries of TCP/IP
initiators. These runtime libraries are called resolvers and most often
will not have caches of their own (thus, they are stub resolvers). Stub
resolvers request recursive service from their designated upstream full
resolvers. A full resolver is capable of caching data for reuse, and of
surfing the zone hierarchy to locate a DNS RR no matter where in the
namespace it is located or on which authority servers it may be stored.

— Paul Vixie, “DNS Complexity”

To this it is necessary to add the concept of a Resource Record Set, or RRset, which
is a group of Resource Records having identical name, class, and type.

1.2 Passive DNS Replication

Weimer’s Passive DNS Replication is a technique “to obtain domain name system
data from production networks, and store it in a database for later reference […]
once the data has been stored in a local database, more elaborate queries are possi-
ble, which leads to further applications.” [1] These more elaborate queries are usu-
ally inverse queries, as opposed to the more typical “reverse” queries encountered
in the DNS.2 (The original DNS specification supported an IQUERY opcode, which,

1Illustrative of the dynamic nature of the DNS, hq.acm.org is no longer a separate zone as of the
time of the present writing.

2An “inverse” query referred to the location of keys given a particular value, while a “reverse”
query refers to how IP address keys are formatted in order to look up values in the in-addr.arpa

and ip6.arpa DNS trees.

Edmonds 3

ISC Passive DNS Architecture

due to the hierarchical, distributed nature of the DNS, never worked very well, and it
was formally deprecated in RFC 3425 [7].) Depending on the layout of the database,
other types of queries not directly supported by the DNS protocol are possible as
well, such as enumerating all known nodes below a certain point in the DNS tree.

Note that a database built from passive DNS information does not have to ad-
here to the same data model as a full recursive DNS resolver. Since the focus of such
a database is diagnostic and introspective in nature, it can for instance accommo-
date disparate, conflicting records existing simultaneously at the same location in
the DNS tree. And since passive DNS systems are not nameservers, records do not
necessarily have to be expired based on time-to-live values. A passive DNS database
can thus functions as a historical log of a partial subset of the records that have ap-
peared in the DNS.

Paul Mockapetris, the inventor of the domain name system, noted in one of the
foundational documents [3] of the DNS that:

The sheer size of the database and frequency of updates suggest that
it must be maintained in a distributed manner, with local caching to
improve performance. Approaches that attempt to collect a consistent
copy of the entire database will become more and more expensive and
difficult, and hence should be avoided. The same principle holds for the
structure of the name space, and in particular mechanisms for creating
and deleting names; these should also be distributed.

— Paul Mockapetris, RFC 1034

Mockapetris was referring to the active, most current version of the database — a
historical database that included previous versions of changed records would nec-
essarily be even larger. While we cannot “collect a consistent copy of the entire
database”, we can however collect a subset of the database by replicating the DNS
records received by a sample of the DNS resolvers on the Internet, namely the ones
participating in the ISC Passive DNS data collection effort.

We are aided by the historical, exponential increase in computer CPU power and
storage capacity. We assert that this decades-long period of exponential growth has
perhaps outstripped the growth of the DNS and that relatively modest investments
in computer hardware can process extremely large quantities of DNS data.

Some of the issues encountered in collecting and processing a contemporane-
ously large amount of DNS data was described by Mark Lottor [4]:

Edmonds 4

ISC Passive DNS Architecture

ZONE currently runs on a DECsystem–20 and is written in assembler.
The amount of data is quickly reaching the limits of the DEC–20 sec-
tion address space, and the hardware’s ability to survive gets slimmer
each day. ZONE assembles all its data in core before dumping it to disk.
[…] A new version of ZONE needs to be written to run on a modern
computer system. A completely new architecture should be designed
to handle the enormous amount of data collected and expected in the
future.

— Mark Lottor, RFC 1296

1.3 ISC Passive DNS

The ISC Passive DNS system consists of the following conceptual stages:

(1) The initial collection stage, where the packets between DNS resolvers and au-
thoritative DNS servers are collected together at a central processing point.

(2) The decomposition of individual DNS response messages into a stream of indi-
vidual RRsets. Each RRset is annotated with the IP address of the server that
sent the RRset.

(3) The de-duplication of this stream of RRsets.

(4) A reduction stage where the name of the RRset and the response IP address
which originated the RRset are used to infer based on available information the
closest enclosing zone or “bailiwick” of the RRset. (This stage locates an RRset
within the DNS hierarchy using what we call the “passive DNS bailiwick recon-
struction algorithm”.) The response IP address metadata is stripped from the
RRset and the bailiwick is added.

(5) A second de-duplication of the stream of RRsets, which are now annotated with
zone information.

(6) A filtering stage where “undesirable” records are eliminated, based on static
blacklists maintained by hand.

Note that while stages 2 and 3 and stages 4 and 5 are conceptually distinct, they
are actually performed back-to-back and combined internally in our implementa-
tion. Thus, the message passing interface consists of the following simplified set of

Edmonds 5

ISC Passive DNS Architecture

stages, which are made available via the ISC SIE channel system, and correspond
respectively to the SIE channels numbered 202, 207, 208, and 204:

(1) The initial message collection stage.

(2) Decomposition and de-duplication of messages into individual RRsets.

(3) Reduction of RRsets via bailiwick reconstruction and further de-duplication.

(4) Filtering.

Edmonds 6

ISC Passive DNS Architecture

2 Processing stages

This section describes each conceptual stage of the ISC Passive DNS system in detail.

2.1 Initial message collection

ISC Passive DNS makes use of a software package called nmsg[12], which contains
a module called dnsqr, which reconstructs UDP DNS query-response transactions
based on the capture of network packets. This passive DNS sensor is deployed di-
rectly on recursive, caching DNS servers or a nearby network tap and collects only
the query-response transactions that occur between the recursive DNS resolver and
authoritative DNS servers. It does not collect any of the query-response traffic that
occurs when the client sets the RD or “Recursion Desired” bit to 1, that is, the traffic
that occurs between DNS “stub” clients and the caching server itself, since only the
traffic generated in response to a cache miss (RD bit set to 0) is strictly needed in
order to build a passive DNS database.

The passive DNS sensor is stateful and collects both the outgoing query packets
from the caching server’s DNS resolver as well as the incoming response packets
from authoritative DNS servers. The incoming responses are coordinated with the
outgoing queries based on a tuple of the following values (the “DNS 9-tuple”):

Element Description

Query IP The address of the initiator.a

Response IP The address of the target.b

IP protocol Usually 17, UDP.

Query port The port number of the initiator.

Response port The port number of the target, 53.

ID Randomized 16 bit nonce.

QNAME The domain name being looked up.

QTYPE Its type.

QCLASS Its class.
a This is the source in queries and the destination in responses.
b This is the destination in queries and the source in responses.

Edmonds 7

ISC Passive DNS Architecture

Responses can arrive in multiple packets due to EDNS0 fragmentation[6]. The
sensor automatically captures and reassembles these packets, so that downstream
consumers process these large responses transparently.

When the sensor receives a query packet, it temporarily buffers the packet into
an in-memory structure, the state table. When a response message is received that
corresponds to an outstanding query in the state table, the query and response pack-
ets along with metadata such as timestamps are encapsulated into a single dnsqr
message and written to the capture output stream. A configurable upper limit on
the total number of entries in the state table (128K) as well as a time limit on the
oldest query in the state table (60 seconds) are enforced.

For the purpose of replicating DNS protocol transactions, the state table is ac-
tually indexed by the first six values in the 9-tuple (the “DNS 6-tuple”), in order to
handle responses which lack a question section (QDCOUNT is 0), but only if the re-
sponse code is FORMERR, SERVFAIL, NOTIMP, or REFUSED. If the response code is any
other value, such as NOERROR or NXDOMAIN, or if the response contains a question sec-
tion, then the full 9-tuple must match for the query and response to be considered
part of the same transaction.

Individual dnsqr messages are classified into three separate types based on the
result of query-response state reconstruction:

• UDP_QUERY_RESPONSE. Matching query and response messages.
• UDP_UNANSWERED_QUERY. A query message was sent, but expired from the state

table without a matching response message being received.
• UDP_UNSOLICITED_RESPONSE.A response message was received, but a correspond-

ing query message was not present in the state table.

This laborious reconstruction of DNS query-response state is necessary in order to
defeat a trivial blind spoofing vulnerability. If an attacker suspected that a specific
recursive DNS server were particating in passive DNS replication, he could send
DNS response packets containing arbitrary data to the IP address of the recursive
server. Without correlation of query and response packets, the passive DNS sys-
tem would have no way to tell these unsolicited response packets apart from legit-
imate responses. This reconstruction process adheres to the resiliency principles
described in RFC 5452[9].

The aggregate stream of dnsqr messages from multiple passive DNS sensors
forms the input into the remaining stages of the passive DNS system.

Edmonds 8

ISC Passive DNS Architecture

2.2 Decomposition into RRsets

Once collected, the raw, individual response messages are decomposed into a finer
stream of RRsets. These RRsets[5] consist of one or more Resource Records from
the Answer, Authority, and Additional sections (the “response sections”) of the
DNS response message having the same name, type, and class.

The collected dnsqr messages are subject to several checks before further pro-
cessing:

• Only messages of type UDP_QUERY_RESPONSE are processed; the other dnsqr mes-
sage types are discarded.

• The time of capture is checked to make sure that the data is not too old. Mes-
sages older than 12 hours3 are discarded, to prevent accidentally uploaded old
data or data from a system with a wildly inaccurate system clock from entering
the system.4

• The UDP checksum of the response message is verified to be either present and
correct, or absent. (The UDP checksum is absent from only a very tiny minority
of response packets.) The UDP checksum is either verified on the fly at this stage
if the data came from an older release of the dnsqr sensor software, or is a sim-
ple check of a field in the dnsqr metadata if the data came from a newer release.
(Newer releases of the dnsqr software allow the passive DNS sensor operator to
zero the IP address of his resolvers in captured packets while still communicating
the status of the UDP checksum to downstream components of the passive DNS
system.)

• Response messages that fail to be decoded correctly by the DNS message parser
are discarded.

• Response messages where the TC bit is set are discarded.
• Response messages where the QDCOUNT is not 1 are discarded.

If these checks succeed, each Internet-class (IN) RRset from each of the three re-
sponse sections are taken one at a time, canonicalized, and annotated with the
timestamp of the response and the IP address of the server which originated the
response, and passed to the next stage.

The canonicalization process downcases the RRset’s name, sorts the record data
values if the RRset consists of more than one RR, and downcases the domain names
that appear in record data values according to RFC 4034 [8] section 6.2 and draft-

ietf-dnsext-dnssec-bis-updates [10] section 5.1.

312 hours is selected as a value which is a bit longer than a typical temporary network partition.
4Ideally, all capture systems should have NTP-synced system clocks.

Edmonds 9

ISC Passive DNS Architecture

2.3 Initial de-duplication

De-duplication of the RRset stream is performed by keeping a window of RRsets in
memory. This suppressionwindow is a FIFO-expired store of key-value entries with
a hard limit on the amount of total memory consumed by the entries. In this initial
or “front” de-duplication stage, these keys are the tuples generated by the RRset
decomposition stage.

Each key is a tuple of the following fields:

Element Description

rrname RRset owner name.

rrclass RRset class.

rrtype RRset type.

rdata An array of one or more record data values, in sorted order.

response_ip Response IP address.

The value for each entry in the suppression cache is a structure containing the
following fields:

Element Description

time_first Earliest timestamp that the key was seen.

time_last Latest timestamp that the key was seen.

count Number of times the key was seen between time_first and time_last.

The de-duplication cache works as follows:

(1) Each incoming tuple is converted into a key. If the key is not present in the
de-duplication cache, a new key-value entry will be created, and an INSERTION

message is written to the output stream. This INSERTION message will contain
a tuple of some of the above fields from the key and value: rrname, rrclass,
rrtype, rdata, response_ip, and time_first.

The time_last and count fields are not present in the INSERTION messages in the
output stream because this is the first time the key has been seen since the begin-
ning of the suppression window. Internally, the count field is initialized to the value
1, and the time_last field is initialized to the same value as the time_first field.

Edmonds 10

ISC Passive DNS Architecture

(2) If the key of the incoming RRset is already present in the suppression cache,
the entry’s count field is incremented by 1, the time_first field is updated if
the incoming timestamp is earlier, and the time_last field is updated if the
incoming timestamp is later. No message is sent to the output stream.

(3) If the total memory size of the suppression cache exceeds a set limit, one or
more of the oldest entries are expired until the cache is under the limit again.5

These expired entries are sent to the output stream and contain the full set
of combined key-value fields: rrname, rrclass, rrtype, rdata, response_ip,
time_first, time_last, and count.

That is, EXPIRATION messages look similar to INSERTION messages except with the
addition of the time_last and count fields.

Note that over the course of the suppression window from the time a unique
entry enters the cache to the time it leaves, the entry will only be seen in the output
stream twice; the INSERTION message and the corresponding EXPIRATION message,
of course.

While the use of INSERTION messages in the output stream doubles the number
of output messages for entries that are only seen once in the output stream, and
indeed many RRsets are only ever seen once by our passive DNS system, a large
number of RRsets are suppressed by the de-duplication cache. Additionally, no
matter the size of the suppression window, generating an INSERTIONmessage when
an entry enters the cache results in downstream consumers receiving timely, nearly
instant notification of new RRsets. Eventually, at the reception of the correspond-
ing EXPIRATION message the downstream consumer is made aware of how many
times the RRset occurred during its time in the suppression cache. That is, due to
the repetitiveness in the raw stream of DNS input data, downstream consumers of
the output of this stage trade the knowledge of the exact arrival times of individual
occurrences of an RRset for a substantial reduction in the total volume of data.

Additionally, this strategy for data volume reduction is easy to scale horizontally
by partitioning the input over multiple, independent de-duplication cache instances
and combining the output.

5As of the time of this writing, our deployment uses a limit of 16 gigabytes of memory for the
suppression cache, which is sufficient to create a window of about 3–4 hours of data.

Edmonds 11

ISC Passive DNS Architecture

2.4 Bailiwick reconstruction

Bailiwick reconstruction is a passive technique that approximates the location of an
RRset within the DNS hierarchy. Modern recursive DNS servers have been hard-
ened to perform rigorous checks on the data returned by authoritative nameservers
in order to prevent cache poisoning, and unfortunately the results of these checks
are not directly inferrable by an observer of DNS packet data without keeping a sig-
nificant amount of state. (It would instead be preferable to instrument the recursive
DNS server such that packet capture is performed by a routine running internal to
the DNS server process, so that the relevant internal state could be replicated into
the output stream.)

ISC Passive DNS implements a passive bailiwick reconstruction algorithm that
serves two purposes: 1) the location of a given DNS record within the DNS hierar-
chy is an important piece of metadata that is necessary to place that DNS record in
context; and 2) it prevents “untrustworthy” records that are a result of intentional
or unintentional cache poisoning attempts from being replicated by downstream
consumers.

As an example of the first purpose, consider the normal process of delegation in
the DNS. A domain name is delegated by a parent zone to a child zone by the pres-
ence of NS records (and potentially in-zone “glue” address records) — the “delega-
tion point” at the bottom of the parent zone. The child zone receives the delegation
by placing its own, authoritative versions of these records at the “zone apex” at the
top of the child zone. The authoritative version of these records in the child zone
are considered to be more trustworthy — see RFC 2181 [5] §5.4.1 — and hence will
replace the version of the records from the parent zone if they differ. (Note that
the DNS delegation uses identical values for the Resource Record name and type
between the child and parent zones.) When the bailiwick reconstruction process
annotates an RRset with the closest known enclosing zone it is made possible to
distinguish between the versions of a record from a parent zone versus those from
a child zone, and we can disambiguate between various types of misconfiguration,
such as inconsistency between child and parent zone nameservers, or inconsistency
among sibling nameservers for a particular zone.

As an example of the second purpose — that of reducing, hopefully to zero,
the number of “untrustworthy” records in the output RRset stream — nameservers
which are authoritative for a large number of zones are sometimes misconfigured
so that the nameserver believes it is serving its records from a common ancestor
of these zones. This zone contains synthetic NS records for the common ancestor
zone which will be discarded by modern DNS servers because of the internal state

Edmonds 12

ISC Passive DNS Architecture

that they keep about the DNS hierarchy, and it is important to be able to distin-
guish these records (which frequently squat on, e.g., the com or root names) from
the genuine records served by the real nameservers for those zones.

It is important to note that bailiwick reconstruction has a heavy dependency
on the query-response verification described earlier. Without reasonable assur-
ance that a response came from a genuine nameserver and not an attacker with
the ability to spoof his source address, the bailiwick reconstruction algorithm can
be easily fooled. This isn’t a perfect solution, of course, because of the possibility of
Kaminsky-style retry-until-success blind response spoofing, but we have endeav-
ored to raise the level of assurance of DNS records obtained from packet capture
based passive DNS replication to the level of those obtained directly from a mod-
ern, hardened recursive DNS server[9].

2.4.1 Algorithm

The passive DNS bailiwick reconstruction algorithm takes the name of a given Re-
source Record and the IP address of the nameserver which originated the Resource
Record, and answers the question, “Is the IP address a nameserver for a zone that
contains or can contain this name, and if so, what is the closest such containing zone
known?”

It does this by keeping a cache of NS, A, and AAAA records which have themselves
been verified by this algorithm. This cache needs to be initially bootstrapped some-
how, analogously to how a real recursive DNS server needs to have a set of “root
hints”. Root hints could be used to bootstrap the bailiwick cache, but in practice it’s
quicker to use a full copy of the root zone, as the delegations from the root to top-
level domains are long-lived and are infrequently received by recursive DNS servers
in production.

Given a Resource Record name and nameserver address, the algorithm works
in the following manner:

(1) Walk up the DNS tree by stripping leading labels from the Resource Record
name under consideration, until the root label is reached. This generates a
list of potential zones, one of which may be the closest known enclosing zone
for the given Resource Record. (For instance, if the Resource Record name
is www.isc.org, the potential zones are www.isc.org, isc.org, org, and the
root.)

(2) Consider each potential zone, starting with the deepest one first. Check if there
are any NS records in the bailiwick cache for the potential zone. If so, convert

Edmonds 13

ISC Passive DNS Architecture

the nameserver names thus returned into a list of IP addresses by looking up
the needed A or AAAA records in the bailiwick cache. If the nameserver address
which originated the Resource Record under consideration is on this list then
the potential zone is the closest known enclosing zone, and the algorithm ter-
minates.

(3) If the list of potential zones is exhausted, then there is no closest known enclos-
ing zone. Either the bailiwick cache does not contain the needed records6, or
the record is “poison”.

2.5 Re-de-duplication

The re-de-duplication stage is a second or “back” de-duplication process that is very
similar to the initial stage described earlier, and in fact a large amount of code is
shared in the implementation of these stages. This stage consumes the stream of
RRsets after it has been transformed by the bailiwick reconstruction stage, so there
are the following key differences with the initial de-duplication stage:

• Because this is a re-de-duplication stage, the stream of RRsets that are being con-
sumed are not a simple stream of RRset observations but rather are a more com-
plex stream of INSERTION / EXPIRATION pairs, as transformed by the bailiwick
reconstruction stage. In operation, the second stage cache has a larger capacity
than the first stage cache, even at the same absolute memory limit7, due to the
reason that the response server IP address metadata is stripped from the RRset
and replaced by the result from the bailiwick stage, which is a domain name, com-
bined with the fact that the average DNS zone has more than one nameserver. (As
of January 2012, the real DNS data processed by our system is roughly cut in half
by absolute volume by the second stage of de-duplication.)

This also means that the sequence of INSERTION / EXPIRATION messages from the
“front” cache need to be coherently combined into a single INSERTION / EXPIRATION
pair generated by the “back” cache. This is done by taking the sum of the count field
that appears in the front cache’s EXPIRATIONmessages, setting the time_first field

6Note that the bailiwick cache should be able to comfortably accommodate these records. If it is
too small, false negatives can be generated due to records that are missing from the bailiwick cache
but have not yet expired from the DNS caches being replicated. Our deployment uses 16 gigabytes
of memory for the bailiwick cache, and records are expired in LRU-order.

7As of the time of this writing, our deployment uses a limit of 16 gigabytes of memory for the
second suppression cache (the same limit as the first cache), which is sufficient to create a window
of about 12 hours of data, about 4 times the size of the window of the first cache.

Edmonds 14

ISC Passive DNS Architecture

in the back cache to the earliest time_first value observed in the front cache’s out-
put stream, and similarly setting the time_last field to the latest time_last value.

• The aggregation of INSERTION / EXPIRATION messages from the front cache into
the back cache makes it possible for an EXPIRATION message for an entry in the
front cache to be generated that, after transformation, has no corresponding en-
try in the back cache (most likely, because that entry has expired out of the back
cache). Because EXPIRATION messages from the front cache will have the count

and time_last fields set, these fields will be set in INSERTION messages from the
back cache in contrast to the INSERTION messages from the front cache, which do
not have these fields set.

2.6 Static filtering

This stage performs no actual modification to the contents of the messages in its in-
put stream but rather completely discards messages if they match any entries found
on a blacklist. This blacklist has to be manually updated and is maintained with the
goal of a substantial reduction in volume by discarding records that are unlikely to
be of interest in the assembling of a historical database of DNS records.

The blacklist includes a number of domain names which, after the aggressive
de-duplication performed by previous stages, generate a large number of unique
records. These domains are typically DNSBLs or other types of tunneled database
lookups which are especially prevalent in certain kinds of security software. CDNs
and load-balancing services are also capable of generating a large number of unique
records. Another voluminous source are PTR records; in the data actually processed
our deployment, the overwhelming majority of PTR records appear to be generically
named.

3 Message passing interface

This section describes the message passing interface between each concrete stage of
the ISC Passive DNS system. These concrete stages make up a loosely coupled data
processing pipeline.

An encapsulation protocol called NMSG, also developed by ISC, is used as the ac-
tual communications channel. The messages passed between the stages of the ISC
Passive DNS system are serialized using Google’s Protocol Buffers[11] encoding and
delivered over a network socket. Multiple message types are supported by NMSG by
identifying different message types with unique codes. Multiple individual message

Edmonds 15

ISC Passive DNS Architecture

payloads are automatically coalesced into a single NMSG container to reduce the total
number of network packets sent.

These NMSG containers are carried over channels provided by the ISC Security
Information Exchange (SIE). These channels provide a way of grouping and con-
straining different message streams and referring to the network identifiers (VLAN,
IP, port) that make up the stream with a convenient short-hand.

3.1 Raw response messages

SIE output channel: 202

Output message type: ISC/dnsqr

The ISC/dnsqrmessage format is the native output format of the dnsqr capture tool
described earlier. As mentioned in that section, the individual message units of this
format usually contain the multiple packets that make up the query and response
of a given DNS transaction. While these messages encapsulate the raw IP packets
verbatim, the message API provides hooks for directly extracting the DNS response
message, transparently performing IP datagram reassembly if necessary.

3.2 “Front” de-duplication

SIE input channel: 202

SIE output channel: 207

Input message type: ISC/dnsqr

Output message type: SIE/dnsdedupe

This is the combination of message decomposition and initial de-duplication.

Edmonds 16

ISC Passive DNS Architecture

3.3 “Back” de-duplication

SIE input channel: 207

SIE output channel: 208

Input message type: SIE/dnsdedupe

Output message type: SIE/dnsdedupe

This is the combination of bailiwick reconstruction and re-de-duplication.

3.4 Filtering

SIE input channel: 208

SIE output channel: 204

Input message type: SIE/dnsdedupe

Output message type: SIE/dnsdedupe

This is the static blacklist-based filtering.

3.5 Discards

SIE channel: 206

Message type: ISC/dnsqr, SIE/dnsdedupe

This channel provides a sink where data discarded from further processing by stages
described in 2.2, 2.4, and 2.6 are sent. These can be messages of type ISC/dnsqr (if
the message was rejected from stage 2.2; for instance, a UDP checksum failure or
rejection as malformed by the DNS message parser) or of type SIE/dnsdedupe (if the
message was rejected from stage 2.4 or 2.6; for instance, rejection by the bailiwick
algorithm or the static filter). The rejection reason is annotated onto the message
payload.

Edmonds 17

ISC Passive DNS Architecture

4 References

References

[1] F. Weimer. 2005. Passive DNS Replication, FIRST.

[2] P. Vixie. 2007. DNS Complexity, ACM Queue 5, no. 3: 24–29.

[3] P. Mockapetris. 1987. Domain names - concepts and facilities, IETF RFC 1034.

[4] M. Lottor. 1992. Internet Growth (1981-1991), IETF RFC 1296.

[5] R. Elz, R. Bush. 1997. Clarifications to the DNS Specification, IETF RFC 2181.

[6] P. Vixie. 1999. Extension Mechanisms for DNS (EDNS0), IETF RFC 2671.

[7] D. Lawrence. 2002. Obsoleting IQUERY, IETF RFC 3425.

[8] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose. Resource Records for
the DNS Security Extensions, IETF RFC 4034.

[9] A. Hubert and R. van Mook. 2009. Measures for Making DNS More Resilient
against Forged Answers, IETF RFC 5452.

[10] S. Weiler and D. Blacka. 2012. Clarifications and Implementation Notes for
DNSSECbis, IETF RFC draft-ietf-dnsext-dnssec-bis-updates-16.

[11] Google. Protocol Buffers. http://code.google.com/p/protobuf/.

[12] Internet Systems Consortium, Inc. nmsg. ftp://ftp.isc.org/isc/nmsg/.

Edmonds 18

http://code.google.com/p/protobuf/
ftp://ftp.isc.org/isc/nmsg/

	Introduction
	Domain Name System
	Passive DNS Replication
	ISC Passive DNS

	Processing stages
	Initial message collection
	Decomposition into RRsets
	Initial de-duplication
	Bailiwick reconstruction
	Algorithm

	Re-de-duplication
	Static filtering

	Message passing interface
	Raw response messages
	``Front'' de-duplication
	``Back'' de-duplication
	Filtering
	Discards

	References

